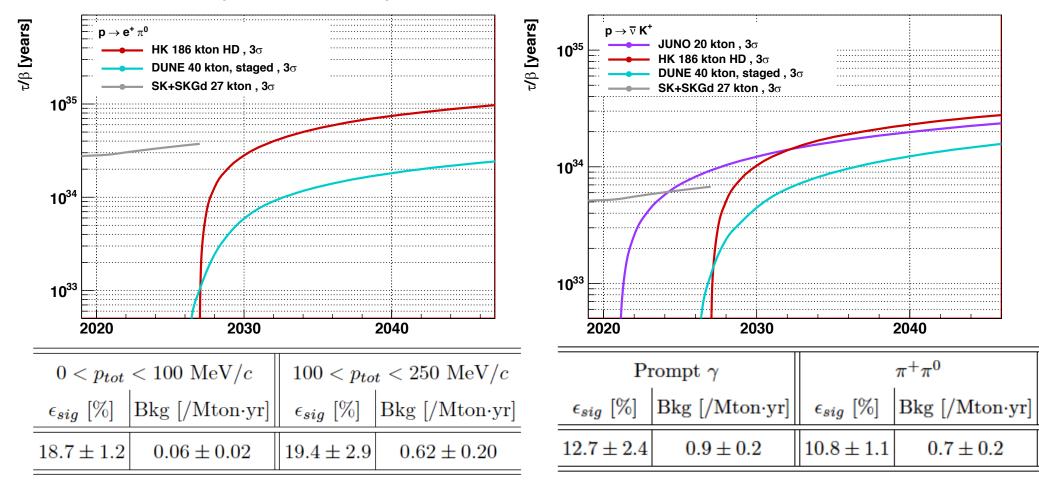

Hyper-Kamiokande: Proton Decay and The Snowmass Process


Roger Wendell
Kyoto University
Snowmass
Rare Processes and Precision Frontier
Townhall Meeting
2020.10.02

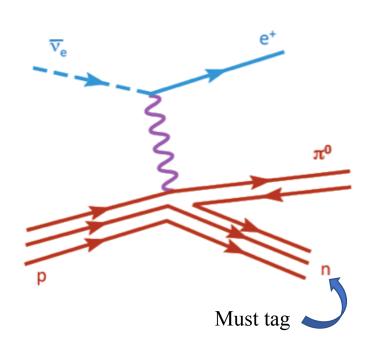
Hyper-Kamiokande (HK)

- Megaton-class water Cherenkov detector viewing natural neutrino sources and accelerator neutrinos from J-PARC
 - 260 kton volume (190 kton fiducial) well-suited for many nucleon decay searches
 - Successor to the Super-Kamiokande experiment with improved photosensors, calibration, etc.
- Japanese budget approved early in 2020
 - First formal collaboration meeting in September
 - Excavation of the Hyper-K cite and related civil construction is now underway
 - ~430 Collaborators from 19 countries

Nucleon Decay Discovery Potential at 3σ

- Excellent sensitivity to "flagship" decay modes and many other nucleon (dinucleon) decay modes
- Sensitivity projections are based on analyses at Super-Kamiokande, projected to Hyper-K exposures

Physics Motivation for LOI

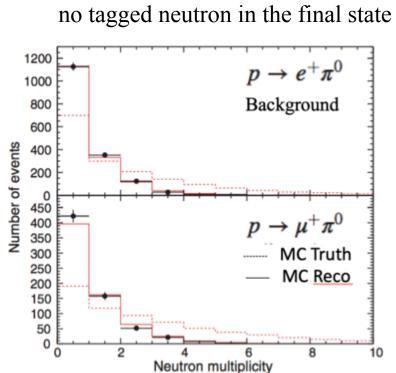

- Emphasize need for improved experimental and theoretical studies of background processes
- And for measurements of multiple modes (synergy: DUNE, JUNO, THEIA)

Reducing Backgrounds and Uncertainties for Discovery: $p \rightarrow l^+M^0$

Remaining backgrounds in Super-K analysis are atmospheric neutrinos

CCQE with π^0 from secondary hadronic interactions, CC $\nu_{\mu,e}$ π^0 , and CC $\nu_{\mu,e}$ $\pi^{+/-}$, all with

no tagged neutron in the final state

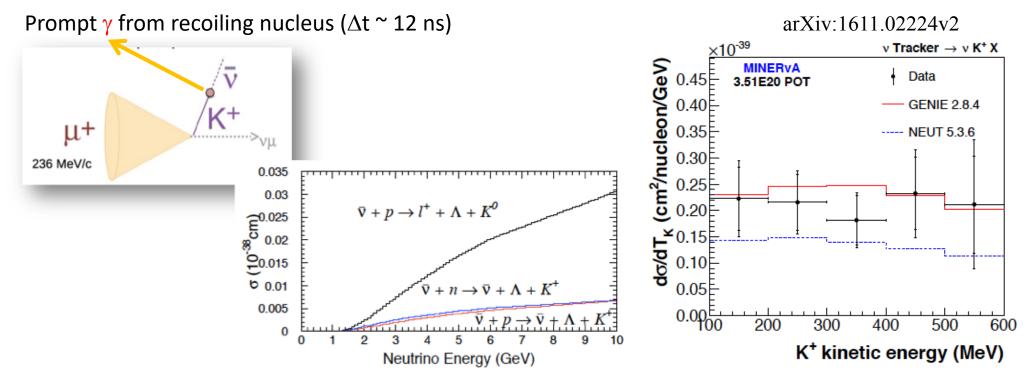

	/-	$p o e^+\pi^0$		
Uncertainty [%]		low P _{tot}	high P_{tot}	
Efficiency				
•	π -FSI	2.8	10.6	
	Correlated decay	1.9	9.1	
	Fermi momentum	8.5	9.3	
	Reconstruction	4.6	5.6	
	Total	10.2	17.7	
Background				
	Flux	7.0	6.9	
	Cross section	14.5	10.4	
	π-FSI	15.4	15.4	
	Reconstruction	21.7	21.7	
	(neutron tag)	10	10	
	Total (I/II/III)	31.2	29.4	
	(IV)	32.7	31.1	
Exposure		1.0	1.0	

PRD 95, 012004 (2017)

- What Common or Joint Efforts are needed?
- Hyper-K and the PDK community in general will benefit from better experimental and theoretical understanding of
 - Neutrino interactions in the ~1-4 GeV range
 - Final state and secondary interactions of π , protons, neutrons (and accompanying n production)
 - Neutron multiplicity in neutrino interactions

Reducing Backgrounds and Uncertainties for Discovery: $p \rightarrow l^+M^0$

- Remaining backgrounds in Super-K analysis are atmospheric neutrinos
 - CCQE with π^0 from secondary hadronic interactions, CC $\nu_{\mu,e}$ π^0 , and CC $\nu_{\mu,e}$ $\pi^{+/-}$, all with


Uncertainty [%]		$p ightarrow e^+ \pi^0$	
		$low P_{tot}$	high P _{tot}
Efficiency			
•	π-FSI	2.8	10.6
	Correlated decay	1.9	9.1
	Fermi momentum	8.5	9.3
	Reconstruction	4.6	5.6
	Total	10.2	17.7
Background			
	Flux	7.0	6.9
	Cross section	14.5	10.4
	π -FSI	15.4	15.4
	Reconstruction	21.7	21.7
	(neutron tag)	10	10
	Total (I/II/III)	31.2	29.4
	(IV)	32.7	31.1
Exposure		1.0	1.0

PRD 95, 012004 (2017)

- What Common or Joint Efforts are needed?
- Hyper-K and the PDK community in general will benefit from better experimental and theoretical understanding of
 - Neutrino interactions in the ~1-4 GeV range
 - Final state and secondary interactions of π , protons, neutrons (and accompanying n production)
 - Neutron multiplicity in neutrino interactions

Reducing Backgrounds and Uncertainties for Discovery: p→vK⁺

Since the K⁺ from PDK is unseen in water the initial state cannot be reconstructed and hence dominant background is anything that produces a kaon

- What Common or Joint Efforts are needed?
- Hyper-K and the PDK community in general will benefit from better experimental and theoretical understanding of
 - Associated kaon production via neutrino and cosmogenic production
 - Nuclear de-excitation spectrum of ¹⁶O following nucleon knock out, nuclear modeling

- Work between now and Snowmass?
- Finalizing Hyper-K simulated sensitivities, with focus on backgrounds and projected uncertainties
 - Reconstruction improvements will strengthen need for similar improvements in other systematics

Schedule for a contributed paper?

Hyper-K contributed paper is being developed across subgroups of the experiment, including those focused on non-PDK physics, expect submission close to the July 31st deadline.

■ What would Hyper-K like to come out of the Snowmass process? Hope for:

- Continued support of general neutrino and nucleon decay programs, emphasis on synergy and complementarity of current (Super-K) and future programs (DUNE, HK)
- Support of measurements that underlie the discoveries sought in those programs, such as neutrino interactions, meson interaction in media, nuclear modeling, etc.
- Increased participation in Hyper-K from U.S. institutions. Historically the U.S. has played strong roles in predecessor experiments in Japan

Thank You